CUE-102 Selectively Activates and Expands WT1-Specific T Cells for the Treatment of Patients with WT1-Malignancies

Christie Zhang¹, Natasha Girgis¹, Zohra Meraza, Steven Hatfield, Alex Histed, Fan Zhao, Raymond J. Moniz, Kristin Yeung, Fulvio Diaz, Jason Brown, Mark Haydock, Luke Witt, Wynona Bautista, John F. Ross, Saso Cemerski, Anish Suri, Matteo Levissetti, Steven N. Quayle

¹Cue Biopharma, Boston, Massachusetts *These authors contributed equally

Background

- **Immunoswitching** (IS) are rationally engineered biologics comprised of a lyophilized peptide-MHC complex and covalently linked cytokine molecules built upon an Fc framework to enable stability, solubility, favorable PK, and manufacturability.
- **CUE-100 series** ISTs are designed to selectively deliver attenuated IL-2 to WT1-specific tumor-infiltrating and/or WT1-specific tumor-infiltrating dendritic cells (DCs).
- Development of novel modalities targeting WT1 provides a significant opportunity to address high unmet medical need in WT1-positive malignancies, including AML, ovarian, endometrial, breast, lung, gastric, colorectal and pancreatic cancer.

CUE-102 is being developed as a novel therapeutic fusing protein to selectively activate tumor-antigen-specific T cells to treat WT1-expressing cancers.

CUE-100 Series Immuno-STAs

Objectives:
- Generate the maximum dose of WT1-specific CD8+ T cells from whole human PBMCs in vitro.
- Identify WT1-specific CD8+ T cells that produce IFN-γ and TNF-α in response to peptide restimulation of splicing or donor-infiltrating lymphocytes (FL)

Biomarkers:
- WT137-45-Specific CD8+ T Cells in naïve HLA-A2 Transgenic Mice
- WT137-45-Specific CD8+ T Cells from Human PBMCs
- Attenuation of IL-2 Activity in CUE-102

Methods:
- Schematic of CUE-102 molecule.
- Human IL-2 molecules on CUE-102 are functionally attenuated and much less potent than recombinant IL-2 (Proleukin®) in a CTLL-2 cell proliferation assay.
- The IL-2 specificity of CUE-102 facilitates selective phosphorylation of STATs (pSTATs) immediately downstream of LIR-2 on target cells.
- CUE-102 induces pSTATs with greater potency in WT1-specific CD8+ T cells compared to CMV-specific CD8+ T cells.

Results:
- CUE-102 expanded WT1-specific CD8+ T cells in naïve HLA-A2 Transgenic Mice.
- Figure 5 – Schematic of CUE-102 molecule.

Conclusions:
- CUE-102 is a novel fusion protein designed to selectively deliver attenuated IL-2 to tumor-specific CD8+ T cells.
- CUE-102 demonstrates selective binding, activation, and expansion of polyfunctional and cytotoxic WT1-specific primary human CD8+ T cells from healthy and cancer patients.
- The novel mechanism of action of CUE-102, namely selective expansion of tumor-specific CD8+ T cells via delivery of reduced affinity mutant IL-2, supports its potential for anti-cancer efficacy in a Phase I clinical trial in HLA-A2-matched malignant cancers.

Figure 11 – CUE-102 expands functional CTLs in vivo. (A) The majority of WT1-specific CD8+ T cells (red) isolated from the spleen of naïve HLA-A2-transgenic mice immunized with 4 doses of CUE-102 produced IFN-γ, TNF-α and Granzyme B in response to ex vivo restimulation. (B) HLA-A2 mice immunized with CUE-102 show an in vivo killing of HLA-A2-target cells, whereas WT1-specific WT1-377-45 peptide, or an irrelevant peptide, as shown by the loss of WT1-WT1-transfected target cells in CUE-102 immunized HLA-A2 transgenic mice (red), but not in naïve mice (black).

Figure 12 – Repeated treatment with CUE-102 expands WT1-specific CD8+ T cells. Graphs display frequencies of WT1-specific CD8+ T cells among total CD8+ T cells in PBMCs from mice that received multiple doses of CUE-102 at 3 mg/kg CUE-102, or 0.3 mg/kg CUE-102 at week 0 and week 2. (C) WT1-specific CD8+ T cells were detectable in blood at all the 3 mg/kg and 0.3 mg/kg dose levels but the peak level increased with repeated treatment.

Figure 13 – CUE-102 is a Phase 1, FIH study to characterize the safety, tolerability, PK, PD, immunogenicity, and preliminary antitumor activity of CUE-102 in subjects who are HLA-A2/1+ positive, naïve-positive, nonrecipients/cancer donors, and have failed conventional therapies.