Immuno-STAT™ Selective Targeting and Alteration of T cells) Platform: Targeting Tumor Heterogeneity and Tumor Escape Mechanisms

Introduction

Immuno-STAT™ (IS) is a novel immunotherapeutic approach that targets and modulates cell surface receptors to achieve enhanced efficacy and tolerability. The IS platform is designed to selectively target tumor-specific T cells, enabling the delivery of powerful, cytokine-mediated therapies while minimizing toxicity to normal tissues. The IS platform is the result of a collaboration between Cue Biopharma and PhosMed in the United States, and it is currently in clinical development.

Concept

The IS platform uses a combination of IS3 receptor-based ligands and IS2 receptor-based ligands to selectively target tumor-specific T cells. The IS3 ligands induce the expression of IS2 ligands, which in turn activate the IS2 receptors on the T cells, leading to their selective destruction. This selective targeting of tumor-specific T cells can potentially improve the efficacy of immune checkpoint blockade therapies while reducing toxicity to normal tissues.

Ongoing Phase 1 monotherapy clinical trial of CUE-101 in heavily pretreated patients with HPV+ head and neck squamous cell carcinoma

CUE-101 preclinical studies support ongoing Phase 1 pembrolizumab combination trial

Bi-specific Redirected Immuno-STAT (RDi-STAT) platform: Addressing tumor escape mechanisms

CUE-101, CUE-100 series and derivatives

IL-2 based CUE-100 Immuno-STAT series

CUE-101: Leading drug candidate

Immuno-STAT design

The IS platform is designed to selectively target tumor-specific T cells by using a combination of IS3 receptor-based ligands and IS2 receptor-based ligands. The IS3 ligands induce the expression of IS2 ligands, which in turn activate the IS2 receptors on the T cells, leading to their selective destruction. This selective targeting of tumor-specific T cells can potentially improve the efficacy of immune checkpoint blockade therapies while reducing toxicity to normal tissues.

Conclusion

The IS platform has shown promising results in preclinical studies and early clinical trials. Further development and validation of this platform are essential to determine its potential as a novel immunotherapeutic approach for the treatment of various cancer types.